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Previous Monte Carlo studies of SU(4) and SU(5) lattice gauge theory are extended to
pure SU(6) gauge fields in four space-time dimensions. Using Wilson’s form of the ac-
tion, a first-order phase transition is clearly seen at B, =12/g,2=24.0+1.0 on a 4* lattice.

It is generally believed that the non-Abelian
SU(N) gauge groups in four space-time dimensions
confine static quarks for all values of the coupling.
It would be simplest if there were no phase transi-
tions in going from the high-temperature region to
the low-temperature region. Monte Carlo studies!
of SU(2) and SU(3) gauge theories have verified
this conjecture. However, this behavior has been
shown not to hold for SO(3),>* SU@4),%* and
SU(5)*% gauge groups in four space-time dimen-
sions where first-order phase transitions were
found. Of course, these transitions may be just a
transition from one confining phase at high tem-
perature to another confining phase at low tem-
perature and, thus, not lead to deconfinement for
any value of the coupling. Here we extend the
analysis to SU(6) to see if the first-order phase
transition of SU(4) and SU(5) gauge theories sur-
vives in SU(6) gauge theory and, if it does, to cal-
culate its critical temperature.

A hypercubical lattice of four Euclidean space-
time dimensions with fixed finite lattice spacing is
used to define our system. Denoting nearest-
neighbor lattice sites by i and j, we then associate
with the link {i,j} joining them a unitary unimo-
dular N X N matrix U;;. We define our partition
function by

zp)= [ [{gqu]eXP(—BS[U]),

where the inverse temperature S is related to the
bare coupling constant g, by B=2N/g,% The
measure in the partition function is the normalized
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invariant group measure. The action’ is the sum
over all plaquettes [ in the lattice
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1——Re TrUg |, 1
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S[U]=3XSo=2
[m]

[m]

where Uy is the product of link variables around a
plaquette. Periodic boundary conditions are used
throughout the calculation. Once the system is in
equilibrium,® we measure the average action per
plaquette (E ). Further details on the calculational
procedure can be found in Ref. 4. The high-
temperature expansion for the average action per
plaquette gives (N > 3)

B 3
E)=1-— op’), (2)
(E) YR B
while the low-temperature expansion gives
N2-1 2
= O . 3
(E) B T (B~ (3)

In Fig. 1(a) we show the average action per pla-
quette as a function of the number of Monte Carlo
iterations for the SU(6) gauge group on a periodic
4* hypercubical lattice for both ordered and disor-
dered starting lattices. These runs correspond to
an inverse temperature of B=24.0. From Fig. 1(a)
we see that the ordered and disordered starts do
not converge to a unique value of the average ac-
tion per plaquette after 470 iterations but approach
two distinct values, suggesting a first-order phase
transition in the SU(6) model. By way of contrast,
we show the average action per plaquette for both
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FIG. 1. The evolution of the ordered (crosses) and
disordered (full circles) configurations for the SU(6)
gauge group on a 4* lattice at inverse temperatures of (a)
B=24.0, (b) B=23.0, (c) B=25.0, and (d) B=26.0.

ordered and disordered starting lattices for inverse
temperatures of $=23.0 [Fig. 1(b)], B=25.0 [Fig.
1(c)], and B=26.0 [Fig. 1(d)]. We can quite clearly
see that the ordered and disordered starts stabilize
at unique values of the average action per plaquette
after 240, 490, and 420 iterations through a 4* lat-
tice for B=23.0, 25.0, and 26.0, respectively.

In Fig. 2 we show the average action per pla-
quette for SU(6) as a function of the inverse tem-
perature B. The data points result from 100 itera-
tions through the lattice where we averaged over
the last 20 iterations. A hysteresis loop is clearly
visible beginning at B~21.0. The critical inverse
temperature is estimated from the hysteresis loop
to be B, =24.0+1.0. Fig. 1(a) confirms that this is
indeed the critical inverse temperature. Also
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FIG. 2. The average action per plaquette as a func-
tion of the inverse temperature 8. The crosses and open
circles represent the average over the last 20 iterations
of 100 iterations through the lattice for ordered and
disordered starting lattices, respectively, while the full
circles represent cases where the ordered and disordered
starting lattices converge to a unique value before 100
iterations through the lattice.

shown in Fig. 2 are the leading-order high- and
low-temperature expansions of Egs. (2) and (3).
We can see that our Monte Carlo-generated data is
in good agreement with these expansions outside
the region of the critical point.

It is well known that the Wilson form of the ac-
tion is not unique. Many forms of the action will
yield the same continuum theory. In particular,’
in Eq. (1) we can replace Re Tr U by
[Re[TrUE]")P, where m, n and, p are integers.
Correctly normalized they should all yield the
same continuum theory. More generally, we are
not limited to looking at an elementary plaquette
but can replace our elementary plaquette by any
convex polygon of plaquettes and we will again re-
cover the same continuum theory. It may well be
that our first-order phase transition found in
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FIG. 3. The critical values of the quantity go’N for
SU(N) gauge theory as a function of 1/N.
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SU(4), SU(5), and now SU(6) gauge theories are
simply a result of taking the Wilson form of the
action. Indeed, modification of the SU(2) action
can induce a spurious transition, without affecting
the continuum physics.® We are currently studying
similar modifications of the SU(5) action.

It has recently been proposed by Green and
Samuel'® that the SU(N) gauge groups on a four-
dimensional space-time lattice would suddenly
develop a phase transition at N = co with
80’N=2.53. Their conclusion is apparently in-
correct in that a first-order transition is already
present at finite N. Although the connection with
their analysis is unclear, we show in Fig. 3 the crit-

ical values of go2N as a function of 1/N for N=2,
3,4,5, and 6. In N=2 and 3, where no transitions
are observed, we plot the position of the peaks in
the specific heat.! The results are consistent with
approaching the value predicted in Ref. 10.
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